知識點名稱:氮化硅陶瓷
關鍵詞:氮化硅,Si3N4,Silicon nitride
相關概念和介紹:
氮化硅(Si3N4)是一種由硅和氮組成的共價鍵化合物,1857年被發現,到1955年,其作為陶瓷材料實現了大規模生產。它是一種重要的結構陶瓷材料,硬度大,本身具有潤滑性,并且耐磨損,為原子晶體;高溫時抗氧化。而且它還能抵抗冷熱沖擊,在空氣中加熱到1000℃以上,急劇冷卻再急劇加熱,也不會碎裂。正是由于氮化硅陶瓷具有如此優異的特性,人們常常利用它來制造軸承、氣輪機葉片、機械密封環、永久性模具等機械構件。如果用耐高溫而且不易傳熱的氮化硅陶瓷來制造發動機部件的受熱面,不僅可以提高柴油機質量,節省燃料,而且能夠提高熱效率。中國及美國、日本等國家都已研制出了這種柴油機。
氮化硅(Si3N4)存在有3種結晶結構,分別是α、β和γ三相。α和β兩相是Si3N4最常出現的型式,且可以在常壓下制備。γ相只有在高壓及高溫下,才能合成得到,它的硬度可達到35GPa。反應燒結法制得的Si3N4密度為1.8~2.7g/cm3,熱壓法制得Si3N4密度為3.12~3.22g/cm3。莫氏硬度9~9.5,維氏硬度約為2200,顯微硬度為32630MPa。熔點1900℃(加壓下)。通常在常壓下1900℃左右分解。比熱容0.71J/(g·K)。生成熱為-751.57kJ/mol。熱導率為(2-155)W/(m·K)。線膨脹系數為2.8~3.2×10-6/℃(20~1000℃)。不溶于水。溶于氫氟酸。在空氣中開始氧化的溫度1300~1400℃。比體積電阻,20℃時為1.4×105 ·m,500℃時為4×108 ·m。彈性模量為28420~46060MPa。耐壓強度為490MPa(反應燒結的)。
Si3N4 陶瓷是一種共價鍵化合物,基本結構單元為[ SiN4 ]四面體,硅原子位于四面體的中心,在其周圍有四個氮原子,分別位于四面體的四個頂點,然后以每三個四面體共用一個原子的形式,在三維空間形成連續而又堅固的網絡結構。氮化硅陶瓷是一種燒結時不收縮的無機材料陶瓷。氮化硅的強度很高,尤其是熱壓氮化硅,是世界上最堅硬的物質之一。具有高強度、低密度、耐高溫等性質。
氮化硅陶瓷制品的生產方法有兩種,即反應燒結法和熱壓燒結法。反應燒結法是將硅粉或硅粉與氮化硅粉的混合料按一般陶瓷制品生產方法成型。然后在氮化爐內,在1150~1200℃預氮化,獲得一定強度后,可在機床上進行機械加工,接著在1350~1450℃進一步氮化18~36h,直到全部變為氮化硅為止。這樣制得的產品尺寸精確,體積穩定。熱壓燒結法則是將氮化硅粉與少量添加劑(如MgO、Al2O3、MgF2、AlF3或Fe2O3等),在19.6MPa以上的壓力和1600~1700℃條件下壓熱成型燒結。通常熱壓燒結法制得的產品比反應燒結制得的產品密度高,性能好。
反應燒結法( RS)
是采用一般成型法,先將硅粉壓制成所需形狀的生坯,放入氮化爐經預氮化(部分氮化)燒結處理,預氮化后的生坯已具有一定的強度,可以進行各種機械加工(如車、刨、銑、鉆). 最后,在硅熔點的溫度以上;將生坯再一次進行完全氮化燒結,得到尺寸變化很小的產品(即生坯燒結后,收縮率很小,線收縮率< 0.1% ). 該產品一般不需研磨加工即可使用。反應燒結法適于制造形狀復雜,尺寸精確的零件,成本也低,但氮化時間很長。
熱壓燒結法( HPS)
是將Si3N4 粉末和少量添加劑(如MgO、Al2O3、MgF2、Fe2O3 等),在19.6 MPa以上的壓強和1600 ℃以上的溫度進行熱壓成型燒結。英國和美國的一些公司采用的熱壓燒結Si3N4 陶瓷,其強度高達981MPa以上。燒結時添加物和物相組成對產品性能有很大的影響。由于嚴格控制晶界相的組成,以及在Si3N4 陶瓷燒結后進行適當的熱處理,所以可以獲得即使溫度高達1300 ℃時強度(可達490MPa以上)也不會明顯下降的Si3N4系陶瓷材料,而且抗蠕變性可提高三個數量級。若對Si3N4 陶瓷材料進行1400—1500 ℃高溫預氧化處理,則在陶瓷材料表面上形成Si2N2O相,它能顯著提高Si3N4 陶瓷的耐氧化性和高溫強度。
熱壓燒結法生產的Si3N4 陶瓷的機械性能比反應燒結的Si3N4 要優異,強度高、密度大。但制造成本高、燒結設備復雜,由于燒結體收縮大,使產品的尺寸精度受到一定的限制,難以制造復雜零件,只能制造形狀簡單的零件制品,工件的機械加工也較困難。
常壓燒結法( PLS)
在提高燒結氮氣氛壓力方面,利用Si3N4 分解溫度升高(通常在N2 = 1atm氣壓下,從1800℃開始分解)的性質,在1700———1800℃溫度范圍內進行常壓燒結后,再在1800———2000℃溫度范圍內進行氣壓燒結。該法目的在于采用氣壓能促進Si3N4 陶瓷組織致密化,從而提高陶瓷的強度.所得產品的性能比熱壓燒結略低。這種方法的缺點與熱壓燒結相似。
氣壓燒結法( GPS)
近幾年來,人們對氣壓燒結進行了大量的研究,獲得了很大的進展。氣壓燒結氮化硅在1 ~10MPa氣壓下,2000℃左右溫度下進行。高的氮氣壓抑制了氮化硅的高溫分解。由于采用高溫燒結,在添加較少燒結助劑情況下,也足以促進Si3N4晶粒生長,而獲得密度> 99%的含有原位生長的長柱狀晶粒高韌性陶瓷. 因此氣壓燒結無論在實驗室還是在生產上都得到越來越大的重視. 氣壓燒結氮化硅陶瓷具有高韌性、高強度和好的耐磨性,可直接制取接近最終形狀的各種復雜形狀制品,從而可大幅度降低生產成本和加工費用. 而且其生產工藝接近于硬質合金生產工藝,適用于大規模生產。
由于氮化硅與碳化硅、氧化鋁、二氧化釷、氮化硼等能形成很強的結合,所以可用作結合材料,以不同配比進行改性。氮化硅用做高級耐火材料,如與sic結合作SI3N4-SIC耐火材料用于高爐爐身等部位;如與BN結合作SI3N4-BN材料,用于水平連鑄分離環。SI3N4-BN系水平連鑄分離環是一種細結構陶瓷材料,結構均勻,具有高的機械強度。耐熱沖擊性好,又不會被鋼液濕潤,符合連鑄的工藝要求.
國際市場占有率、發展方向的引領力仍然被國外知名企業所控制。以日本京瓷、東芝、賽瑞丹、CoorsTek和英國Sailon公司最具代表性。2015年中材高新氮化物陶瓷有限公司突破了熱等靜壓氮化硅陶瓷球批量化制造技術,成為繼美國庫斯泰克、日本東芝之后第三家,也是國內首家形成批量化生產熱等靜壓氮化硅陶瓷材料的企業,產品出口到瑞典斯凱孚、美國鐵姆肯、德國GMN、西班牙福賽等地。
1955年,Haggerty等理論計算出氮化硅的本征熱導率應在200~320W/(m·K)之間。隨后Hirosaki等采用分子動力學方法模擬計算了在β-Si3N4單晶中的能量傳遞規律,預測β-Si3N4沿a軸熱導率為170W/(m·K),沿c軸熱導率為450W/(m·K),模擬結果為高導熱氮化硅陶瓷材料的研究提供了理論依據。國際上主要的高導熱氮化硅陶瓷生產商有東芝集團(TOSHIBA)、日本電氣化學(DENKA)、日本丸和(MARUWA)、日本精細陶瓷(JFC)、日立金屬株式會社(HITACHI)。商用高導熱氮化硅陶瓷的熱導率在85W/(m·K)以上,抗彎強度為600~850MPa,斷裂韌性為5.0~7MPa·m1/2。日立公司對氮化硅基板進行了特殊的活化工藝處理,熱導率可以達到130W/(m·K),其他力學性能不變。氮化硅是綜合性能最佳的基板散熱材料。
骨科植入的一個最重要指標是植入體的抗菌性。Gorth等最先對比了Si3N4陶瓷、聚醚醚酮(PEEK)和金屬Ti對蘭氏陰性細菌的體外抗菌效果。實驗證明,經過3d后,氮化硅陶瓷表面細菌數量最少。生物相容性是氮化硅陶瓷作為生物陶瓷的必要條件,Sohrab等和Kue等通過實驗證明,氮化硅陶瓷有很好的細胞增殖效果并且細胞代謝正常。Howlett等在兔股骨髓腔內植入氮化硅陶瓷體,90d后,股骨髓腔內沒有發生任何不良后果。實驗證明,氮化硅陶瓷具有很好的體內生物相容性。氮化硅陶瓷具有上述的優異特性使其成為理想的生物材料,其在生物傳感器、脊柱、骨科、牙科等植入物方面得到應用。
應用:
氮化硅陶瓷的應用:高溫軸承、機械密封環、輸送鋁液的電磁泵的管道及閥門;氣輪機葉片、機械密封環、永久性模具等機械構件;柴油發動機點火裝置、工程結構陶瓷等;氮化硅陶瓷覆銅基板,在汽車逆變器、減速器、減振器等應用。
氮化硅陶瓷在機械行業中主要用作閥門、管道、分級輪以及陶瓷刀具,最廣泛的用途是氮化硅陶瓷軸承球。
氮化硅陶瓷軸承球與鋼質球相比具有突出的優點:密度低、耐高溫、自潤滑、耐腐蝕。陶瓷球作為高速旋轉體產生離心應力,氮化硅的低密度降低了高速旋轉體外圈上的離心應力。致密Si3N4陶瓷還表現出高斷裂韌性、高模量特性和自潤滑性,可以出色地抵抗多種磨損,承受可能導致其他陶瓷材料產生裂紋、變形或坍塌的惡劣環境,包括極端溫度、大溫差、超高真空。氮化硅軸承有望在各個行業中獲得廣泛的應用。氮化硅軸承球在使用中轉速每分鐘高達60萬轉,其主要用在精密機床主軸、電主軸高速軸承,航空航天發動機、汽車發動機軸承等設備用軸承中。
多孔氮化硅陶瓷具有相對較高的抗彎強度和更低的密度,這是其在航空航天領域得到應用的關鍵因素之一。它還具有抗蠕變性(與金屬相比),可提高結構在高溫下的穩定性。這種材料具有多種附加特性,包括硬度、電磁特性和熱阻,作為透波材料被用來制作天線罩、天線窗。隨著國防工業的發展,導彈向高馬赫數、寬頻帶、多模與精確制導方向發展。氮化硅陶瓷及其復合材料具有的防熱、透波、承載等優異性能,使其成為新一代研究的高性能透波材料之一。
該材料目前用于利基市場應用,例如往復式發動機部件和渦輪增壓器、軸承、金屬切削和成型工具以及熱金屬處理。往復式發動機部件氮化硅部件的最大市場是用于燃燒部件和磨損部件的往復式(柴油和火花點火)發動機。小型致密燒結氮化硅部件用于汽車和卡車發動機,用于應力和溫度相對較低且故障后果不是災難性的應用。這些組件大部分是在日本和美國制造的。作為生產水平的例子,估計每年生產 300,000 臺燒結氮化硅渦輪增壓器。在美國,減排推動了陶瓷部件的發展,部件主要用于中型和重型發動機。在日本,改進的性能一直是主要驅動力,這些部件用于輕型發動機。
信息來源:
(以上信息來源或部分來源于以下文獻或網絡鏈接,若有侵權請及時告知以便刪除)
延伸閱讀:
您好!請登錄